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Abstract

Total luminescence and synchronous scanning fluorescence spectroscopy techniques were tested as regards their ability to

characterize and differentiate edible oils, including soybean, sunflower, rapeseed, peanut, olive, grapeseed, linseed and corn oils.

Total luminescence spectra of all oils studied as n-hexane solutions exhibit an intense peak, which appears at 290 nm in excitation

and 320 nm in emission, attributed to tocopherols. Some of the oils exhibit a second long-wavelength peak, appearing at 405 nm in

excitation and 670 nm in emission, belonging to pigments of the chlorophyll group. Additional bands were present in the inter-

mediate range of excitation and emission wavelengths in some oils, arising from unidentified compounds. Similarly, bands attributed

to tocopherols, chlorophylls and unidentified fluorescent components were detected in the synchronous-scanning fluorescence

spectra. Classification of oils based on their synchronous fluorescence spectra was performed using a non-parametrical k nearest

neighbours method and linear discriminant analysis. Both methods provided very good discrimination between the oil classes with

low classification error. The results presented demonstrate the capability of the fluorescence techniques for characterizing and

differentiating vegetable oils.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Fats and oils constitute one of the major categories of

food products, as they contain many nutrients. There
has been great interest in studying the chemical com-

position of oils, since such information is valuable for

the assessment of oil quality. As well as the major

components, tri-fatty acid esters of glycerol, vegetable

oils contain about 2–5% of minor compounds in a wide

range of chemical classes. These compounds have a

marked influence on the oil quality. For instance, toc-

opherols and carotenoids affect the oxidative stability of
oils, whereas chlorophylls are responsible for oil pho-

tooxidation (deMan, 1999).
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Gas and liquid chromatography are the techniques

that have been widely used for oil analysis (Cert, Mo-

reda, & Perez-Camino, 2000). Chromatographic tech-

niques are highly selective and have low detection limits
for many relevant compounds; however, they often in-

volve extraction and preconcentration, which make the

overall analysis time-consuming. Therefore, chromato-

graphic methods cannot be used for real-time in situ

analysis. Moreover, chromatographic methods are ex-

pensive, as they require solvents of high purity for an-

alytic separation and sample extraction. Spectroscopic

methods present an alternative to chromatography,
which can be applied quickly and inexpensively. The

main disadvantage of spectroscopic methods is their

lack of selectivity; hence, the data on qualitative and

quantitative composition often have to be extracted

using advanced multivariate procedures. Pattern recog-

nition routines are used for qualitative analysis, based
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either on statistical methods or on artificial neural net-

works (Bro et al., 2002).

A number of applications of spectroscopic methods

in food analysis have been reported. Infrared spectro-

scopic techniques, such as near infrared spectroscopy
and mid IR spectroscopy, have been used for testing

authenticity of foods, such as vegetable oils (Lai,

Kemsley, & Wilson, 1994), olive oil (Bertran et al., 1999;

Downey, McIntyre, & Davies, 2003), coffee (Downey,

Briandet, Wilson, & Kemsley, 1997), honey (Qiu, Ding,

Tang, & Xu, 1999), orange juice (Towmey, Downey, &

McNulty, 1995), milk (Woo et al., 2002), meat (Yang &

Irudayaraj, 2001) and some others (Tzouros & Arvani-
toyannis, 2001).

Fluorescence spectroscopy is one of the most prom-

ising techniques of increasing importance for complex

food analysis. Among the benefits of fluorescence spec-

troscopy is its enhanced selectivity as compared to

others spectroscopic methods, the high sensitivity to a

wide array of potential analytes and, in general, the

avoidance of consumable reagents and of extensive
sample pre-treatment (Oldham, McCarroll, McGown, &

Warner, 2000). However, conventional fluorescence

techniques, relying on measurements of single emission

or excitation spectra, are often insufficient in the analysis

of complex systems. In such cases, total luminescence or

synchronous scanning fluorescence techniques may im-

prove the analytic potential of fluorescence measure-

ments (Ndou & Warner, 1991).
Total luminescence spectroscopy (TLS) involves si-

multaneous acquisition of multiple excitation and

emission wavelengths in order to increase the method

selectivity. The resulting emission-excitation data matrix

(EEM) provides a total intensity profile of the sample

over the range of excitation and emission wavelengths

scanned (Ndou & Warner, 1991). Synchronous fluores-

cence spectrometry takes advantage of the ability to
vary both the excitation and emission wavelengths

during the analysis. In this method, excitation and

emission monochromators are scanned simultaneously,

synchronized so that a constant wavelength difference is

maintained between the two (Ndou & Warner, 1991).

Both these techniques have been successfully used in the

analysis of crude oils, pharmaceuticals and polycyclic

aromatic hydrocarbons, to characterize motor oils, and
to characterize, differentiate and classify natural organic

matter, such as humic matter (Guiteras, Beltran, &

Ferrer, 1998; Patra & Mishra, 2002; Persson & Wed-

borg, 2001; Ndou & Warner, 1991). Several papers have

reported the potential of fluorescence in the analysis of

food products. Fluorescence spectroscopy was used for

monitoring coloured precursors in the sugar industry

(Baunsgaard, Andersson, Arndal, & Munck, 2000;
Baunsgaard, Norgaard, & Godshall, 2000; Bro, 1999;

Bro et al., 2002), analysis of fish oil (Pedersen, Munck,

& Engelsen, 2002), flour, soap and frying oil (Engelsen,
1997). A few articles have explored the possibility of

application of fluorescence methods to the analysis of

vegetable oils (Engelsen, 1997; Kyriakidis & Skarkalis,

2000; Giungato, Notarnicola, & Colucci, 2002).

We have recently applied total fluorescence spec-
troscopy and synchronous fluorescence spectroscopy for

characterization of various kinds of edible oils (Sikorska

et al., 2003). The present paper continues our effort to

explore the possibility of application of fluorescence

methods in analysis of vegetable oils. Total fluorescence

and synchronous scanning fluorescence techniques were

used for characterization of commercially available

vegetable oils. The objective of the present study was to
investigate intrinsic fluorophores of edible oils in order

to discriminate between eight different types of oils. The

samples were discriminated by applying statistical

methods to the synchronous fluorescence spectra of oils.
2. Materials and methods

2.1. Materials

The studies were performed on eight commercially

available edible oils, including soybean, sunflower, ra-

peseed, peanut, olive, grapeseed, linseed and corn oils.

The linseed oil was obtained at a local oil manufacturer;

other oils were acquired in a supermarket and had ex-

piry dates exceeding the maximum duration of the ex-
periments.

a-Tocopherol (97%), n-hexane and acetone were

purchased from Aldrich. Bacteriopheophytin c was a

gift from Prof. D. Fra�ckowiak, Pozna�n University of

Technology.

2.2. Fluorescence measurements

Fluorescence spectra were obtained on a Fluorolog 3-

11 spectrofluorometer, Spex-Jobin Yvon S.A. A Xenon

lamp source was used for excitation. Excitation and

emission slit widths were 2 nm. The acquisition interval

and the integration time were maintained at 1 nm and

0.1 s, respectively. A reference photodiode detector, at

the excitation monochromator stage, compensated for

the source intensity fluctuations. Individual spectra were
corrected for the wavelength response of the system.

Right-angle geometry was used for oil samples diluted in

n-hexane (1% v/v) in a 10 mm fused-quartz cuvette.

Three-dimensional spectra were obtained by mea-

suring the emission spectra, in the range 290–700 nm,

repeatedly, at excitation wavelengths from 250 to 450

nm, spaced by 5 nm intervals in the excitation domain.

Fully corrected spectra were then concatenated into an
excitation-emission matrix.

Three-dimensional plots and contour maps of total

luminescence spectra were produced using the DataMax
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Grams/32 programme. All contour maps were plotted

using the same scale range of fluorescence intensities (0–

2� 107 intensity units) and number of contours. The

data along the Z-axis were interpolated to improve

appearance.
The synchronous fluorescence spectra were collected

by simultaneously scanning the excitation and emission

monochromator in the 250–700 nm range, with constant

wavelength differences, Dk, between them. Four spectra

were recorded for each sample, with Dk of 10, 30, 60, 80

nm. Fluorescence intensities were plotted as function of

the excitation wavelength.

2.3. Statistical methods

Samples from four bottles were analyzed for each of

the oils in triplicate, giving twelve independent mea-

surements. Four synchronous fluorescence spectra with

different Dk (10, 30, 60, 80 nm) were recorded. As a

result, a total of 96 synchronous fluorescence spectra

were recorded at each of the Dk values. Two methods of
discriminant analysis were used for the purpose of

multiple group classification: nearest neighbours meth-

od (kNN) (Wu &Massart, 1997) and linear discriminant

analysis (LDA) (Kemsley, 1996; Roggo, Duponchel,

Ruckebusch, & Huvenne, 2003).

The k-nearest neighbours is a well-known non-para-

metric classification method (Wu & Massart, 1997). The

principle of this method is that the test object is assigned
to the cluster which is the most represented in the set of

k nearest training objects. For each data point, we

search for the closest data points, called ‘‘nearest

neighbours’’ and decide, according to the values of these

neighbours. kNN is one of the simplest learning tech-

niques – the learner only needs to store the examples,

while the classifier does its work, by observing the ex-

amples most similar to the one to be classified. The k
values were chosen in the range of k ¼ 1; . . . ; 10 for

classification purposes, due to the size of our sample set,

which was too small for larger values of k to be mean-

ingful. This non-parametrical method was chosen be-

cause popular parametrical methods, like LDA and

quadratic discriminant analysis, are often unsuitable for

datasets with number of variables higher than the

number of objects, due to either the observation matrix
singularity, or non-normality of the data set. The near-

est neighbours method allows us to perform the analysis

using entire spectra, without any reduction of the data

sets.

Additionally, LDA was performed on simplified data

sets. For this purpose, six wavelengths were extracted

from the synchronous spectrum recorded at a particular

Dk and analyzed. The LDA method provided good re-
sults, while being very straightforward in calculation

and interpretation. Discriminant coordinates were

found for the purpose of graphical presentation, with
the two principal discriminant coordinates used in the

plots.

The bootstrap method was used to estimate the

classification error. In this method the data set was

randomly split in two independent sets: training and
test. The training set was used to construct the rule and

the test set to test it. This procedure was repeated many

times. The version 0.632+ of this method was applied,

which has small bias and variance values, and 50 boot-

strap replications were performed, which turned out to

be sufficient; additional bootstrap replications caused no

further change of the classification error estimate

(Efron, 1983; Efron & Tibshirani, 1997).
All the statistical procedures were implemented in

Matlab 6.5.
3. Results and discussion

3.1. Total luminescence spectra

Total luminescence spectra were recorded for oils

dissolved in n-hexane. A low concentration of samples,

1% v/v, was chosen to avoid spectral distortions, which

may occur in concentrated oils. Fig. 1 shows contour

maps of their luminescence, constructed in such a way

that one axis represents the emission and another the

excitation wavelength, while the contours are plotted by

linking points of equal fluorescence intensity. Such a
two-dimensional representation often facilitates the

qualitative analysis of the fluorescence patterns.

The spectra shown in Fig. 1, are in general very

similar to those obtained previously for a different set of

oils. Assignment of emission bands to the specific

chemical components, based on comparison of three-

dimensional and single excitation and emission spectra

with the spectra of the respective reference compounds,
was described in detail previously (Sikorska et al., 2003).

The relatively intense band, observed for each of the

oils studied, with excitation in the range of about 270–

310 nm and emission in the range of about 300–350 nm,

has been ascribed to the emission of tocopherols and

tocotrienols (Sikorska et al., 2003). The long-wavelength

band, at 350–420 nm in excitation and 660–700 nm in

emission, present in olive oil (very low intensity) and
linseed oil, is characteristic of the fluorescence of pig-

ments of the chlorophyll group, which includes chloro-

phylls a and b and pheophytins a and b (Sikorska et al.,

2003). Tocopherols (a, b, c and d) are present in oils in

variable amounts, from 70 to 1900 mg/kg, depending on

the type of oil (deMan, 1999). Pigments of the chloro-

phyll group occur mainly in crude oils obtained directly

by the extraction of oilseed, and are subsequently re-
moved during processing (deMan, 1999).

The spectra of the oils reveal the presence of an addi-

tional emission band in the intermediate range, at about



Fig. 1. Contour maps of total luminescence of edible oils diluted in n-hexane, 1% v/v.
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Fig. 2. Excitation spectra of edible oils, kem ¼ 410 nm, diluted in n-
hexane, 1% v/v: SB – soybean, SF – sunflower, R – rapeseed, P –

peanut, O – olive, G – grapeseed, L – linseed and C – corn oils.
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400–450 nm. The shape and intensity of these intermedi-
ate emissions varies fromone oil to another; hence further

studies are needed to identify the respective fluorophores.

The single excitation spectra measured at the emission

wavelength of 410 nm for different oils, despite their

similarity, exhibit variability (Fig. 2). The analysis of these

spectra shows that chemical compounds responsible for

this emission in different oilsmay belong to the same class,

although their chemical structure may vary slightly to
cause the variations observed.

Apart from qualitative distinctions, the oils studied

also vary in fluorescence intensities of the particular

components. For instance, a relatively intense tocoph-

erol emission is observed for corn, soybean, sunflower

and linseed oils, an intermediately intense one – for

rapeseed oil and a weak one for grapeseed, olive
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Fig. 3. (a) Excitation (kem ¼ 325 nm), emission (kex ¼ 295 nm) and

synchronous fluorescence spectra (Dk ¼ 10, 20, 30, 60, and 80 nm) of

a-tocopherol in n-hexane. (b) Comparison of synchronous scanning

fluorescence spectra of a-tocopherol in n-hexane and bacteriopheo-

phytin c in acetone, (Dk ¼ 10, 30, 60, and 80 nm).
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and peanut oils. These differences may correlate with

the variation in tocopherol contents of the respective

oils; however, due to the complexity of the system

studied, any quantitative predictions require further

investigation.
The total luminescence spectra of oils recorded

presently and in our previous study (Sikorska et al.,

2003) are in fact very similar to those reported for virgin

and refined olive oils in isooctane by Giungato et al.

(2002). They found an emission band with the excitation

maximum at 285 nm and the emission maximum at

about 315 nm for virgin olive oils, attributed to toc-

opherols, and a second band with the excitation at 410
nm and emission at 669 nm, ascribed to the chlorophyll

emission. For refined oils, the tocopherol band was

observed with excitation and emission maxima at 295

and 331 nm, respectively, while the chlorophyll emission

was undetectable. Another emission band was observed

for this oil with two excitation maxima at 300 and 315

nm and an emission maximum at 406 nm, the origin of

this emission remaining uncertain.
Characterization and identification of individual

fluorescent components, although desirable, is dispens-

able for the purpose of overall characterization and

differentiation of oil samples based on their fluorescence

properties. Evaluation of differences in total spectral

characteristics of the samples is a viable alternative to

the sample discrimination based on qualitative and

quantitative analysis of individual components. This
total spectral characterization approach will be used in

the present paper for the oil sample discrimination.

Total luminescence spectroscopy can be used for

fingerprinting of the respective oils, and may, for ex-

ample, allow oil identification and quality monitoring;

however, it is a time-consuming method. Acquisition of

contour maps of sufficient resolution, using conven-

tional spectrofluorometers, requires a large number of
emission scans for each sample. The analysis may be

speeded up with CCD or video-spectrofluorometers;

however, such instruments are not widely accessible in

laboratories (Guilbault, 1999). Thus, for analytical

purposes, the synchronous fluorescence techniques may

be used instead of TLS.

3.2. Synchronous fluorescence scan

Another techniques, of great potential in analysis of

mixtures of fluorescent compounds, is synchronous

scanning fluorescence spectroscopy. In this method both

excitation and emission characteristics are included into

the spectrum by simultaneous scanning excitation and

emission wavelength at a constant difference between

them. As a result, the selectivity for individual compo-
nents is considerably improved; additionally, much

more information on mixtures of fluorescent com-

pounds is gained. The synchronous fluorescence scan-
ning method is a very simple and effective means of

obtaining data for several compounds present in a

mixture in a single scan (Guilbault, 1999; Ndou &

Warner, 1991).

As we have already seen, the main fluorescent com-
ponents identified in the present and previous studies of

oils are compounds of the tocopherol and chlorophyll

groups. Fig. 3 shows the synchronous fluorescence

spectra of the representatives of these two groups: bac-

teriopheophytin c and for a-tocopherol, along with its

excitation and emission spectra.

As is evident from Fig. 3(a), the shape and intensity

of synchronous spectra depend on the difference be-
tween the excitation and emission wavelengths Dk,
which defines the overlap of the absorption and emis-

sion bands. For the lowest Dk ¼ 10 nm, an effective

bandwidth reduction is observed as compared to the

emission band, with the synchronous spectrum consist-

ing of a single narrow band with a maximum at 301 nm.

At higher Dk values, the maximum of the synchronous

spectrum is shifted to the blue and broadened, with



222 E. Sikorska et al. / Food Chemistry 89 (2005) 217–225
additional fluorescence intensity changes. The highest

intensity is observed for Dk ¼ 20 nm, which corresponds

to the Stokes shift for a-tocopherol in n-hexane. A fur-

ther increase of Dk results in a lower band intensity. A

single band was present in the synchronous spectrum of
a-tocopherol for each of the Dk values tested.

Fig. 3(b) presents the synchronous fluorescence

spectra of bacteriopheophytin c compared to those of a-
tocopherol. The bacteriopheophytin c differs in structure

from pheophytins and chlorophylls a and b, in that the

pyrrole ring IV is not reduced, and the position 17 is

esterified by an acrylic residue – instead of a propionic

group, the terminal carboxylic group being generally not
esterified (Schoefs, 2003). However, the absorption and

emission spectra of the pigments of chlorophylls group

are very similar; thus the respective spectra of bacteri-

opheophytin c are shown for the sake of comparison.

For Dk ¼ 10 nm, a sharp intense band exists in the

synchronous spectrum with a maximum at 664 nm. The

band intensity decreases at higher Dk. The spectra

measured for Dk ¼ 60 and 80 nm exhibit two bands with
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relatively low intensities at 665, 610 nm and 665, 603

nm, respectively.

The synchronous fluorescence spectra of oils diluted

in n-hexane, for eight oils studied, are shown in Fig. 4.

The synchronous fluorescence spectra obtained, with
a small Dk ¼ 10 nm, show an effective bandwidth re-

duction, resulting in spectral simplification. These

spectra have a major band with a maximum at around

300 nm for all the oils.

For Dk ¼ 30 nm, the short-wavelength emission band

is broadened and its maximum is shifted to the blue by

about 5 nm, for all the oils studied. Simultaneously, an

increase of fluorescence intensity is observed. The fluo-
rescence intensity is again reduced at still higher Dk
values (60, 80 nm), accompanied by further broadening

of the emission band. Based on similarity of position,

shape and intensity of synchronous fluorescence scans

observed for oils and for pure a-tocopherol in n-hexane,
the short-wavelength emission band can be attributed to

fluorescence of tocopherols, supporting the previous

identification. However, for a-tocopherol a single band
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Table 1

Classification of edible oils based on entire synchronous scan fluores-

cence spectra using the k nearest neighbour method

k Dk

10 nm

(%)

30 nm

(%)

60 nm

(%)

80 nm

(%)

1 Error 1.00 0.89 1.11 1.04

SD 1.38 1.27 1.39 1.40

2 Error 0.96 0.95 1.08 1.19

SD 1.36 1.35 1.39 1.51

3 Error 1.09 0.85 0.95 0.91

SD 1.39 1.23 1.34 1.36

4 Error 1.08 1.12 1.10 0.97

SD 2.79 1.41 1.36 1.93

5 Error 1.27 1.09 1.03 1.33

SD 1.43 1.45 1.35 1.57

6 Error 1.34 1.02 1.44 1.73

SD 2.50 1.46 2.88 4.38

7 Error 1.43 1.35 1.12 1.40

SD 3.83 3.16 2.54 4.47

8 Error 1.48 2.13 1.71 2.17

SD 4.13 6.03 4.56 5.32

9 Error 1.27 2.40 1.17 1.56

SD 2.92 6.93 1.48 3.85

10 Error 2.62 3.44 3.05 2.32

SD 6.33 7.95 8.08 6.13

Table 2

Classification of edible oils using LDA for six selected excitation

wavelengthsa

Dk

10 nm (%) 30 nm (%) 60 nm (%) 80 nm (%)

Error 0.96 0.64 1.07 0.93

SD 1.36 1.07 1.37 1.45
a Excitation wavelengths from synchronous scanning fluorescence

spectra used for LDA:

Dk ¼ 10 nm: 290, 301, 315, 322, 360 and 666 nm.

Dk ¼ 30 nm: 290, 295, 300, 315, 330 and 666 nm.

Dk ¼ 60 nm: 270, 285, 295, 310, 315 and 666 nm.

Dk ¼ 80 nm: 260, 290, 300, 310, 315 and 666 nm.
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is present even at the largest Dk ¼ 80 nm, while in the

synchronous fluorescence spectra of oils a new weak

band appears at higher Dk with the maximum at about

317–319 nm, depending on the oil. This observation

supports an earlier conclusion that fluorescent com-
pounds different from tocopherols are present in vege-

table oils. Moreover, a comparison of synchronous

spectra, particularly of those recorded at larger Dk val-

ues, reveals some differences, which may indicate the

presence of other fluorophores or at least of a different

tocopherol species in the studied oils.

An additional weak, long-wavelength band with a

maximum at 666 nm is observed for linseed oil, ascribed
to the pigments of the chlorophyll group. The presence

of chlorophylls or pheophytins in this oil is also evident

from their three-dimensional spectra. This band is

practically absent in synchronous fluorescence spectra

recorded at larger Dk, due to successive intensity re-

duction, as may be concluded by comparison with the

bacteriopheophytin c synchronous spectra.

The spectral profiles of synchronous fluorescence
spectra of different oils vary significantly between dif-

ferent oils samples. The spectral pattern, for each of the

oils, depends on excitation and emission profiles of

fluorescent components, and thus is unique for each

sample (mixture). As a result, a synchronous spectrum

contains more information than an ordinary excitation

or emission spectrum. The synchronous fluorescence

spectrum thereby becomes a signature or spectral fin-
gerprint of the particular oil sample. Such spectra may

be used, for example, in qualitative analysis, for oil

identification or authentication purposes. However, for

such applications a visual comparison of spectra could

be insufficient and pattern recognition methods should

be used.

3.3. Classification of oils using synchronous fluorescence

spectra

In order to compare the set of synchronous fluores-

cence spectra of different oils, statistical analysis was

performed. The ability of the fluorescence data to dis-

criminate different kinds of oils was investigated by

applying two statistical methods. The k nearest neigh-

bours (kNN) method was applied using the entire
spectra as input, while the linear discrimination method

used selected excitation/emission wavelength pairs as

input.

Table 1 gives results of the kNN method. The dis-

crimination between different oils was very good, with a

very low classification error of 1–2% and low SD values.

The best discrimination was achieved using k ¼ 3 for the

spectra recorded at Dk ¼ 30, 60 or 80 nm.
Next, LDA was applied for selected wavelengths

from synchronous spectra. Such an analysis, although

simplified and limited to only six excitation/emission
wavelength pairs, gave a satisfactory separation between

different oils. The low error and SD values presented

in Table 2 illustrate that all the oils were clearly dis-

criminated by this method. The best separation was

achieved at Dk ¼ 30 nm. The fraction of correct classi-

fication was in the range of 99%. These results show that

complete synchronous spectra may not be needed to

discriminate between the oil classes. Instead, fluores-
cence intensity could be measured at selected excitation/

emission wavelengths, and then be subject to discrimi-

nant analysis.

The results of the LDA analysis can be visualized by

plotting them on a plane, see Fig. 5. The maps defined

by the two discriminant coordinates show that different

Dk values gave different separations of the oil classes. At

Dk ¼ 10 nm, various classes are located close to one to
another, which could result from the simplification of
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the synchronous spectra recorded at this small difference

between the excitation and emission wavelengths. The

separation is improved at Dk ¼ 30 nm, with only corn
and linseed oils still poorly spaced. For the Dk values of

60 and 80 nm the separation of all oils classes is good,

the best being at Dk ¼ 60 nm. These changes are a

consequence of changes in spectral characteristics at

larger Dk values. At larger difference between the exci-

tation and emission wavelengths, the synchronous

spectra become more informative and vary more

strongly between individual samples. Interestingly, the
grapeseed and linseed oils are distinctly separated from

the others, regardless of the Dk value.

Thus, we conclude that synchronous fluorescence

spectra are efficient fingerprints, allowing identification

of the edible oils. The synchronous spectra, comple-

mented by appropriate statistical tools, may be used as

an efficient method for edible oil discrimination. The

present results demonstrate that oil discrimination is
possible, at least in terms of the oil type. The potential

sensitivity of the method for the brand and other origin

indicators will be investigated in future.
4. Conclusions

Fluorescence emission spectroscopy was successfully
used to characterize and discriminate the edible oil

samples. Fluorescence measurements are simple and can

be used to classify different types of oils. Several distinct

spectral ranges, such as those corresponding to toc-
opherols and chloprophylls, could be identified in the

spectra and used as markers for differentiation of oils

with a high degree of accuracy.
It was proved that the synchronous fluorescence

method gives a possibility of classifying different classes

of edible oils using a single scan. It is quite possible that

this approach can also be used for quantitative evalua-

tion of fluorescent constituents after an appropriate

calibration. Such quantitative assay of some fluorescent

pigments may be of interest for analytical purposes,

as their concentration gives useful indications about
cultivars.

The present method, which analyzes a complex mix-

ture without separation, is extremely useful from the

practical point of view. Fluorescence provides high

sensitivity, simplicity and selectivity and may serve as a

complement to other spectroscopic techniques used in

edible oil analysis.
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